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ABSTRACT 

This paper discusses the application of 
hierarchical clustering techniques in the design of 
clustered neural fuzzy approximations for 
optimization problems. Different clustering 
techniques are investigated for addressing the 
function approximation problem from data 
samples. The hierarchical clustering process has 
the advantage of providing a rational manner to 
determine the adequate number of clusters. We 
present a methodology for the iterative design of 
the neural fuzzy network model using the 
clustering scheme. Experiments with some 
analytical functions are performed to confirm the 
methodology discussed. Finally, we investigate 
the design of a superconducting magnetic energy 
storage device with two solenoids and three 
design parameters. The results indicate that the 
employment of hierarchical clustering techniques 
for generating neural fuzzy approximations is a 
valuable technique to solve and to reduce the 
computational cost of practical optimization 
problems. 

 
NOMENCLATURE 

ic  The centroid of the data in 
the i-th cluster 

iC  Represents the i-th cluster 

),( qp CCd  The distance between 

clusters pC  and qC  

ℜℜ⋅ anf :)(  The objective function 

K  The total number of clusters 
n  The number of optimization 

parameters or variables 

ijp  Linear parameters of the 
Fuzzy Inference System 

ℜ  The Euclidian real space 

ijs  The standard deviation of the 
j-th gaussian membership 
function for the i-th variable 

T  The total number of data pair 
samples in Γ  

x  The n-dimensional vector of 
optimization parameters 

tx  The t-th input vector in Γ  

ix  The i-th variable in x  

ijx  The j-th variable in ix  

)( tt fy x=  The evaluation of the t-th 
input vector in Γ  

Γ  Represents the data training 
set 

 
 

INTRODUCTION 
Neural fuzzy network models can be used as 

global approximations in numerical optimization 
problems and therefore reduce the computational 
cost involved in expensive simulations. The use 
of grid partition implies in a high number of fuzzy 
rules when the number of input variables is 
augmented, thus, increasing the complexity of the 
model and the number of examples required for 
training. Clustered neural fuzzy models arise as 
an alternative to get round the so-called “curse of 
dimensionality”. Using clustering techniques it is 
possible to employ less fuzzy rules than with grid 
partition [1], [2]. However, it is difficult to choose 
the adequate number of clusters in a particular 
problem. Moreover, the cluster information may 
be used to refine the approximation at given 
regions of the input space. 

This paper discusses the application of 
hierarchical clustering techniques in the design of 
neural fuzzy models for optimization. The paper 
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is organized as follows: first, we present the 
generation of clustered neural fuzzy 
approximations for optimization. Then, a number 
of hierarchical clustering methods is investigated 
for the function approximation problem, which is 
the main interest in optimization. Finally, an 
iterative design of the clustered neural fuzzy 
model is presented. Some optimization problems 
are analyzed for illustrating the proposed 
methodology. 

 
CLUSTERED NEURAL FUZZY MODELS 

Figure 1 shows schematically the application 
of clustered neural fuzzy models for generating a 
pseudo-objective function for the optimization 
step. The clustering techniques identify different 
clusters in the data, which form the fuzzy rules in 
a fuzzy inference system (FIS). The FIS generates 
a mathematical model for the data, which 
substitutes the real objective function in the 
optimization process. 

 
 

Fuzzy Rules
Generation

Neural Fuzzy
Approximation

Optimization
Process

Clustering
Process

 
Figure 1. Generation of clustered neural fuzzy 

models for optimization. 
 
 
The data set for the clustering process consists 

of the input vectors and their corresponding 
evaluations: 
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Thus, each observation is a ( 1+n )-

dimensional vector represented in the matrix: 
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The input data is, in general, uniformly 

distributed in the volume determined by the input 
space. By adding the information of function 
evaluations in the data set for clustering we are 
incorporating the information of the behavior of 
the function. The data is now distributed in a 
( 1+n )-dimensional volume, but the function 
evaluations disperse the data accordingly to the 
function behavior. Thus, input points that are 
close to one another in the input space may not be 
in the ( 1+n )-dimensional space if the function 
has a rapid variation at these points. Figure 2 
illustrates an example. 

 
 

 
Figure 2. Example of a one-dimensional function. 

The data is dispersed along a curve in the two-
dimensional space. 

 
 
Observe that the input data, randomly 

distributed in the one-dimensional space may 
generate a given cluster distribution, which do not 
consider the information provided by the function 
evaluations. For example, the data for 

0.25.1 << x  may be considered one cluster. 
However, adding the ordinate values, we have 
data distributed in a two-dimensional space, but 
the form of the distribution incorporates the 
information given by the function behavior. We 
can see in the graph that the data for 

0.25.1 << x  are now distant because of the 
variation of the function in this region. The 
clusters formed in the ( 1+n )-dimensional space 
provide better information for the fuzzy rules 
generation. 

After K  clusters are identified, we calculate 
the centroids of each cluster, which can be 
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partitioned into the components of input and 
output dimensional space: 

 

[ ] Kiyiii ,,1,| K== xc  (3) 

 

where ix  are the components of the n-

dimensional input space. 
The i-th cluster centroid can then express the 

following fuzzy rule: 
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where each input membership function is 
described by a Gaussian function: 
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Thus, the degree to which a given vector x  

satisfies the i-th fuzzy rule is given by: 
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The overall output of the model is: 
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where: 
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This model is equivalent to the Sugeno first 

order fuzzy inference system [1]. However, the 
clustered model comprises a fewer number of 
rules than the full grid partition model. 

 

HIERARCHICAL CLUSTERING PROCESS 
With the hierarchical methods for cluster 

analysis, the number of clusters is not determined 
a priori. This is a useful advantage in function 
approximation, since we do not know the 
behavior of the function that generated the data. 
However, the data for the function approximation 
problem is distributed along a hyper surface in a 
hyper volume. Thus, it is important to evaluate 
what is the most appropriate clustering technique 
for this type of data distribution, which is 
different from pattern classification problems. 

In the hierarchical process, the observations 
are sequentially grouped by agglomerative or 
divisive procedures. The agglomerative 
procedures perform a sequence of fusions among 
the observations, whereas the divisive procedures 
perform successive divisions until obtaining 
refined clusters [6]. 

In this paper we consider the following 
agglomerative procedures: 

 
1. Single linkage; 
2. Complete linkage; 
3. Average linkage; 
4. Centroid method; 
5. Ward method; 

 
Next, we give a brief description of each 

method. For a detailed description, see [3]-[6]. 
 

Single Linkage 
In all agglomerative procedures, the two 

clusters that present the least distance 

),( qp CCd  in a given iteration are grouped into 

a new cluster. They differ in the definition of the 

distance ),( qp CCd . 

In the Simple Linkage (SL) method, the 
distance between two clusters p and q is defined 
as the distance between the nearest observations: 
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Complete Linkage 

In the Complete Linkage (CL) method, the 
distance between two clusters p and q is defined 
as the distance between the furthest observations: 
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Average Linkage 
In the Average Linkage (AL) method, the 

distance is defined as the average distance 
between all pairs of observations: 

 

qp

Ci Cj
ji

qp NN

d

CCd p q

∑ ∑
∈ ∈

=

),(

),(

xx

 (11) 

 

where pN  is the number of observations in 

cluster pC  and qN  is the number of 

observations in qC . 

 
Centroid Method 

In the Centroid Method (CM), the distance 
between two clusters is equal to the distance 
between their centroids: 

 

),(),( qpqp dCCd cc=  (12) 

 
Ward Method 

The Ward Method (WM) is similar to the 
Centroid Method, however the number of 
observations in each cluster weights the distance 
between the centroids: 
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DISTANCE METRICS 

There are different metrics for measuring 

distances between two points ix  and jx . The 

traditional Euclidean distance, given by: 
 

)')((),( jijijid xxxxxx −−=  (14) 

 
The standardized Euclidean distance: 
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where S  is the diagonal matrix with diagonal 
elements given by the sample variances of the 
components of x  over the T  observations. 

The City Block metric is given by: 
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Finally, the Mahalanobis metric is given by: 
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where V  is the sample covariance matrix. 

 
ITERATIVE DESIGN OF CLUSTERED 
NEURAL FUZZY MODELS 

Exploiting the clustering techniques we may 
formulate the following iterative scheme for 
improving the quality of the clustered neural 
fuzzy model: 

 

1. Start with 0T  randomly distributed 

samples in the input space and then 
evaluate the function for each sample 
point, obtaining the initial data set Γ . 

2. Then, the samples are normalized to the 
unitary hypercube before the clustering 
step. 

3. Apply the clustering process. 
4. Select the appropriate number of clusters. 
5. Generate and train the neural fuzzy 

approximation. 
6. If the quality of the approximation is 

acceptable then go to step 8, else go to 
step 7. The quality of the approximation 
is measured using a checking data set. 

7. Generate more samples accordingly to a 
multidimensional Gaussian distribution 
centered at the centroid of the cluster with 
the highest checking error. Train the 
model again and go to step 6. 

8. Optimize the neural fuzzy approximation. 
 
The total number of samples used for 

generating the approximation is a compromise 
between quality of the approximation and 
computational cost. Thus, the user may also use a 
maximum number of samples allowable as a stop 
criterion. For deciding the appropriate number of 
clusters in step 4, one may use the distance 

),( qp CCd of the two clusters grouped in a 

given iteration (level of fusion). If a high 
increasing in the level of fusion occurs in a given 
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iteration, use the cluster division at the iteration 
immediately before [3]. 

Finally, observe that the maximum number of 
samples that the designer can accept limits the 
number of clusters in the model. This is because, 
in general, the least squares algorithm is used for 
tuning the linear parameters in (8). The neural 
fuzzy model has a total of )1( +nK  linear 

parameters. Thus, we need more than )1( +nK  
samples for using the least squares estimator, 
since we need more equations than unknowns in 
the linear system. Therefore: 

 

)1()1( +<⇒+> nTKnKT  (18) 
 
This criterion together with the level of fusion 

information may be employed to determine the 
number of clusters. 

 
RESULTS 
Analytical Problem I 

We first investigate the approximation of the 
following nonlinear function: 
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for ]3,3[, 21 −∈xx . The function is shown in 
figure 3. The global minimum occurs in 

)6256.1,2283.0(* −=x  at which 

5511.6)( * −=xf . 
 
 

 
Figure 3. A nonlinear two-dimensional function. 

 
We performed the following experiment: 
 
1. First, we generate 100 randomly 

distributed samples in the input space and 
then evaluate the function for each sample 
point, obtaining the data set Γ . 

2. Then, the samples are normalized to the 
unitary hypercube before the clustering 
step. 

3. For each clustering technique and for four 
different distance metrics, we generate a 
neural fuzzy model for the data set Γ  
using eight clusters (thus, eight rules). 

4. Finally, we measure the root mean square 
error (RMSE) before training, after 500 
training epochs, and the RMSE over 

2121×  points distributed in a uniform 
grid in the input space (check data). 

 
We repeated the experiment 50 times, 

generating the data set again for each time. 
Table 1 shows the mean values over the 50 

runs of the experiment. The values for the initial 
training RMSE, the final training RMSE and the 
checking RMSE are shown. Each clustering 
technique is analyzed using four different metrics, 
respectively: the Euclidean distance, the 
standardized Euclidean distance, the City Block 
distance and the Mahalanobis distance. 

 
Table 1. Results of the experiment 

Method Distance 
Metric 

RMSE 
(1) 

RMSE 
(500) 

RMSE 
Check 

SL Euclid. 1.0524 0.3935 0.8088 
 Std.Euclid. 1.1069 0.4610 1.0229 
 City Block 1.0601 0.4314 1.1498 
 Mahal. 1.1094 0.5241 1.2441 

CL Euclid. 1.0295 0.2957 0.7298 
 Std.Euclid. 1.0347 0.3563 0.7892 
 City Block 1.0283 0.2646 0.6616 
 Mahal. 1.0423 0.3307 0.7579 

AL Euclid. 1.0220 0.2276 0.6457 
 Std.Euclid. 1.0357 0.3402 0.6702 
 City Block 1.0132 0.2825 0.7548 
 Mahal. 1.0106 0.3457 0.8419 

CM Euclid. 1.0313 0.2855 0.7341 
 Std.Euclid. 1.0516 0.3655 0.8480 
 City Block 1.0127 0.2652 0.6992 
 Mahal. 1.0161 0.3155 0.7197 
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WM Euclid. 1.0150 0.2666 0.5969 
 Std.Euclid. 1.0220 0.3727 0.8584 
 City Block 0.9996 0.2506 0.5951 
 Mahal. 1.0011 0.3246 0.8377 

 
Observing the results in table 1 it is possible to 

see that the best overall combination is the 
Average Linkage with Euclidian distance. 
Regarding the checking RMSE, the best 
combinations are respectively Ward method with 
City Block distance, Ward method with Euclidian 
distance and the Average Linkage with Euclidian 
distance. It is important to notice that the good 
performance of the Euclidian distance is due to 
the normalization of the data to the unitary 
hypercube. This procedure equals the relative 
importance of each component of a given pattern. 
If this normalization is not used, the standardized 
Euclidian distance and the Mahalanobis distance 
will have better performances. 

Minimizing the neural fuzzy approximations 
generated after the clustering step, we obtain the 
results shown in table 2, which may be compared 
to the optimal solution. The best optimization 
result was obtained from the model generated 
using the Ward method and the City Block 
distance. 

 
Table 2. Results of the optimization 

Method Distance 
Metric 

X1 X2 FIS value 

AL Euclid. 0.2470 -1.6669 -6.5941 

WM Euclid. 0.2163 -1.6700 -6.6720 

WM City Block 0.2264 -1.6250 -6.6227 

 
This example has only two optimization 

variables. Therefore, the gain obtained in relation 
to the grid partition approach is small, since eight 
rules were employed. 

 
Analytical Problem II 

The next problem investigated consists in the 
minimization of the following function: 
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for ]6,6[−∈ix . Figure 4 depicts the function 

for 2=n . The global minimum is 

4538.4−=ix , ni ,,1 K= . The function has 
n2  local minima. 

If we use three membership functions per 
input variable in the grid partition approach, we 

get a total of n3  rules. This exponential 
characteristic is a strong drawback in neural fuzzy 
design. Thus, when increasing the dimension of 
the problem, the clustering approach becomes 
more practical. 

 
 

 
Figure 4. Function in (19) for 2=n . 

 
 
Table 3 gives information about the clustered 

neural fuzzy approximations of (20) for 
6,,2 K=n , where T  is the number of sample 

points and K  is the number of clusters. The 
clustering technique employed was the Ward 
method with Euclidian distance, which was one of 
the three best combinations in the previous 
problem, see table 1. 

Table 4 shows the results of the optimization 
of the models in table 3. The real coded genetic 
algorithm was employed. 

 
 

Table 3. Information about the clustered neural 
fuzzy models generated 

n T K RMSE RMSE (check) 

2 200 6 0.1274 0.2720 

3 250 12 0.1921 0.3891 

4 300 16 0.1886 0.2966 

5 350 23 0.2430 0.3449 

6 400 28 0.2690 0.4115 
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Table 4. Optimization results with respect to n 
n X1 X2 X3 X4 X5 X6 

2 -4.363 -4.296 --- --- --- --- 

3 -4.465 -4.147 -4.250 --- --- --- 

4 -4.350 -4.101 -4.574 -4.837 --- --- 

5 -4.020 -4.377 -4.242 -3.312 -3.892 --- 

6 -3.210 -3.957 -4.196 -4.085 -4.842 -4.288 

 
This example illustrates the advantage of 

using clustered neural fuzzy models for 
approximating functions in optimization 
problems. Furthermore, the solutions in table 4 
may be improved starting a first order 
optimization method from the points achieved by 
the genetic algorithm. 

 
Numerical Optimization Problem 

Finally, we analyze the design of a 
superconducting magnetic energy storage – 
SMES – device with three design parameters. 
This problem consists in optimizing the 
dimensions of the external solenoid in a SMES 
with two solenoids. The objective is to minimize 
the strayed field evaluated in 21 points along the 
lines a and b, as illustrated in figure 5. The 
constraints are to maintain the stored energy in 
180MJ and to satisfy the quench condition that 
guarantees the superconductivity state. 

 
 

 
Figure 5. SMES configuration. 

 
 

Mathematically, we have: 
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where istrayB ,  is the magnetic flux density 

calculated in the i-th point. 
Also, the constraints are given by: 
 

01)(
0

1 =−=
E

E
g x  (22) 

 

092.4)( max2 ≤−= Bg x  (23) 

 
where the design parameters are 

[ ]222 dhR=x , MJE 1800 = , and 

maxB , in tesla, is the maximum magnetic flux 

density acceptable, otherwise the 
superconductivity state is violated. Table 5 
summarizes information about the problem 
parameters. 

 
Table 5. Parameters range and fixed parameters 

 R1 h1 d1 R2 h2 d2 
Units m m m m m m 
Min --- --- --- 2.6 0.408 0.1 
Max --- --- --- 3.4 2.2 0.4 
Fixed 2.0 0.8 0.27 --- --- --- 

 
Also, the current densities are fixed and equal 

to: 
 

2
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We deal with the constraints by defining the 

transformed objective function: 
 

[ ]2
2

2
1

)(,0max5

)(10)(

x

xx

g

gBf stray

+

+=
 (24) 

 
The evaluation of (21)-(23) involves the 

solution of an electromagnetic field problem, 
which is performed using the finite element 
method. An alternative approach for solving this 
problem is to generate a neural fuzzy 
approximation of (24) and optimize this 
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approximate model, which is less expensive than 
finite element analysis. 

We first generate 300 randomly distributed 
samples and evaluate (24) for each sample point. 
After, the iterative design of the clustered neural 
fuzzy model is applied. We set the maximum 
number of samples equal to 400, i.e., more than 
400 finite element analyses for generating the 
approximation is not permitted. In addition, using 
the relation in (18), we set the maximum number 
of clusters, and therefore rules, to 100. Figure 6 
shows the plot of the levels of fusion during the 
clustering process. 

 
 

 
Figure 6. Level of fusion versus iterations. 
 
 
It is possible to perceive “jumps” in the level 

of fusion after 283 iterations. In iteration 283 we 
have 17283300 =−  clusters. Thus, we cannot 
use less than 17 clusters. We have then a range of 
17 to 100 for K . We select 20=K  clusters 
and generate a neural fuzzy model. 

The training RMSE after 300 epochs was 
0.1144 and the RMSE over a checking data with 
80 samples was 0.0904. Table 6 reports the final 
optimization results using the real coded genetic 
algorithm coupled with the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) method in a hybrid 
methodology. The total number of evaluations of 
the neural fuzzy approximation was 3037 (the last 
37 evaluations are due to the BFGS method). 
Therefore, we obtain a rapid and efficient 
optimization process. We performed only 480 
finite element analyses against the 3037 if the 
direct optimization would be used. Moreover, the 
number of linear parameters is 80 and the number 
of nonlinear parameters is 120, giving a total of 

200 parameters. This number is to a great extent 
inferior to that in the grid partition approach. 

 
Table 6. Final optimization results 

 R2 [m] h2 [m] d2 [m] 
Ref.[7] 3.0800 0.4780 0.3940 
Value 2.9192 0.9739 0.2766 
 Bstray [mT] Energy [MJ] Bmax [T] 
Ref.[7] 0.8985 179.86 4.7341 
Value 4.2 180.08 4.9014 
 F G1 G2 
Ref.[7] 0.0009 –0.0008 –0.1859 
Value 0.0042 0.0004 –0.0186 

 
CONCLUSIONS 

The use of hierarchical clustering techniques 
provide a rational manner for deciding the 
numbers of clusters, and therefore rules, needed 
for approximating an specific function. The 
iterative design process proposed in this paper 
exploits the cluster information using the error 
measure feedback to sample more points where 
the error is greater. This strategy permits to refine 
the model at given regions of the input space and 
to get round the drawbacks of the grid partition 
approach. The generation of accurate and 
inexpensive approximate models is a useful tool 
in practical optimization problems. 
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